Researchers Gain Deeper Insights Into Causes And New Treatment Strategies For Scleroderma PDF Print E-mail
Wednesday, 09 October 2013 21:43
Using mice, lab-grown cells and clues from a related disorder, Johns Hopkins researchers have greatly increased understanding of the causes of Systemic Sclerosis, showing that a critical culprit is a defect in the way certain cells communicate with their structural scaffolding. They say the new insights point the way toward potentially developing drugs for the disease.

"Until now we've had little insight and no effective treatment strategies for Systemic Sclerosis, and many patients die within a year of diagnosis," says Hal Dietz, the Victor A. McKusick Professor of Genetics and Medicine in the Institute of Genetic Medicine and director of the Smilow Center for Marfan Syndrome Research at Johns Hopkins. "Our group created mouse models that allowed us to learn about the sequence of events that leads to the disease's symptoms, and we hope drugs can be developed that target one or more of these events." The Dietz team's results are described in the Oct. 10 issue of Nature.

Patients with Systemic Sclerosis, also known as Systemic Scleroderma, experience a sudden hardening, or fibrosis, of the skin. For some patients, this hardening occurs only in limited areas, but for others, it quickly spreads across the body and to organs such as the heart, intestines and kidneys. It is this fibrosis of the internal organs that is often fatal.

Systemic Sclerosis rarely runs in families, Dietz says, making the gene for the disease, if it exists, very difficult to find. Without a known genetic mutation, researchers had not been able to create a genetically altered mouse with which to study the condition. But Dietz's group was struck by the similarities between Systemic Sclerosis and a less severe, much rarer condition called stiff skin syndrome (SSS), which does run in families, and they suspected that learning more about SSS would also shed light on Systemic Sclerosis.

In the current study, M.D./Ph.D. student Elizabeth Gerber created a line of mice with a genetic variant similar to that found in SSS patients. To test the group's hypothesis, Gerber also created a line of mice with a variant the team knew would prevent fibrillin-1 from interacting with integrin. As the team expected, both groups of mice developed patches of stiff skin, along with elevated levels of proteins and cells involved in the immune response-much like humans with SSS or Systemic Sclerosis. "It seemed we were right that the SSS mutation causes the condition by blocking fibrillin's interaction with integrin," Dietz says. "Something else we found was that both types of mice had high levels of integrin in their skin, which made us think their cells were trying to compensate for the lack of fibrillin-integrin interaction by making more and more integrin."

This still left open the question of what was ultimately causing fibrosis, however: Was it the integrin levels or the immune response? Dietz's group delved deeper into the question by creating mice that had both the SSS mutation and artificially low levels of integrin, and found that the mice never developed fibrosis or an abnormal immune response. "They looked normal," Dietz says.

The team next tried waiting until mice with the SSS mutation had developed fibrosis, then treating them with a compound known to block a key molecule with known connections to both fibrosis and the immune response. This reversed the mice's skin fibrosis and immunologic abnormalities. The team also tested the compounds on lab-grown human skin cells with Systemic Sclerosis, with the same results. This raises the possibility that Systemic Sclerosis patients could eventually be treated with similar compounds in humans, Dietz says. A number of the compounds that proved effective in SSS mice and Systemic Sclerosis cells are currently being explored by drug companies for the treatment of other conditions, prominently including cancer.

The results raised another big question for the team: Which of the several types of skin cells were responsible for the runaway immune response and fibrosis? They traced the activity to so-called plasmacytoid dendritic cells, or pDCs, a cell type known to either tamp down or ramp up immune response, depending on the circumstances.

"Dietz's work gives Scleroderma patients hope that we have gained fundamental insights into the process of fibrosis in Scleroderma. In particular, I am confident that within a relatively short time, novel therapies can be tested in patients, and I am optimistic that such treatments will have a profound effect," says Luke Evnin, Ph.D., chairman of the board of directors of the Scleroderma Research Foundation and a scleroderma patient.

Source: Health News Digest (2013)
Source: Nature (2013)
 
More articles :

» Calcinosis

Background:The Foundation has recently received some feedback from some members of the public asking for more information regarding the condition known as Calcinosis. As part of our efforts we sought to provide a brief, yet informative insight into...

» Low-Dose Naltrexone for Pruritus in Systemic Sclerosis

Tracy Frech, Kirsten Novak, Monica P. Revelo, Maureen Murtaugh, Boaz Markewitz, Nathan Hatton, Mary Beth Scholand, Edward Frech, David Markewitz, and Allen D. SawitzkeReceived 31 May 2011; Accepted 14 July 2011Systemic sclerosis (SSc; scleroderma)...

» Anticoagulation of Systemic Sclerosis Patients In Question

Australia is in a state of ‘clinical equipoise’ over whether to anticoagulate systemic sclerosis patients with pulmonary hypertension, experts say. And with observational studies showing the treatment is associated with a  fivefold...

» Scleroderma Renal Crisis: A Pathology Perspective

Ibrahim Batal, Robyn T. Domsic, Thomas A.Medsger Jr., and Sheldon BastackyInternational Journal of RheumatologyVolume 2010, Article ID 543704Scleroderma renal crisis (SRC) is an infrequent but serious complication of systemic sclerosis (SSc). It is...

» Pathways In Pulmonary Arterial Hypertension

It is well established that the endothelin, nitric oxide and prostacyclin pathways play an important role in the development of pulmonary arterial hypertension (PAH). Indeed, the therapeutic options currently available for the management of PAH all...

» Rare Diseases Day

Febuary 28th, 2010 was Rare Diseases Day, and it was marked with a variety of events and activities all over the world - as well as with plenty of citizen media and online participation. The goal was to raise awareness about so-called. These are...